生成式人工智能驱动的保险电子邮件处理

客户


一家领先的美国人寿保险提供商需要实现大容量客户电子邮件管理的自动化,以减少手动处理、提高响应准确性并保持规范工作流程的合规性。

商业挑战


  • 手动工作量大:每天有数千封电子邮件需要人工审核、分类和起草,耗费大量人力资源。

  • 响应 SLA 违规:缓慢的周转影响了客户满意度和监管承诺。

  • 不一致和错误:手动流程导致变量分类和合规风险。

  • 传统 CRM 集成差距: CRM 更新(索赔、政策变更和反馈)缺乏自动化,减慢了下游流程。

  • 监管压力:保险法规要求端到端加密、可审计性和合规存储。

方法


Trianz 设计了一个完全 AWS 原生的自动化堆栈,将自定义 ML 分类与 GenAI 支持的摘要相结合,实现端到端的电子邮件处理。

  • 人工智能分类:在 Amazon SageMaker 中训练自定义模型,用于索赔、政策更新和反馈分类。

  • 生成摘要:使用 Amazon Bedrock 生成草稿回复,减少手动起草工作量。

  • 数据转换和解析:部署 AWS Glue 用于电子邮件数据提取、部署 Amazon Textract 用于附件、部署 Amazon Comprehend 用于情绪/实体识别。

  • 自动编排:实施 AWS Lambda 工作流以实现可扩展和事件驱动的处理。

  • 安全数据存储:利用 Amazon S3 进行电子邮件存档和元数据管理,并进行端到端加密。

  • CRM 集成:自动对下游 CRM 系统进行结构化更新,确保更快地处理案例。

  • 设计合规性: IAM 角色、加密策略和日志记录确保遵守保险法规。

技术组件


  • 核心 AWS 服务: Amazon Bedrock、SageMaker、Glue、Textract、Comprehend、Lambda、S3。

  • 基础设施工具: IAM、CloudWatch、多可用区高可用性。

转型效应


  • 减少 80% 的手动工作量: 3 个月内减少电子邮件处理工作量。

  • 更快 60% 的 SLA:每封电子邮件的响应时间显著缩短。

  • 满意度提高 15%:客户体验评分明显提升。

  • 每年节省 65 万美元:避免了约 50 万美元的人员成本和约 15 万美元的旧工具许可证成本。

  • <8 个月的投资回报:不到一年就实现了投资回报。

  • 零审计发现:完全合规部署,没有监管漏洞。

联系我们

让我们帮助您
转型和成长


提交您的信息即表示您同意我们修改后的内容  隐私声明.